Kinetic differentiation between enzyme inactivation involving complex-formation with the inactivator and that involving a conformation-change step.

نویسندگان

  • C Liu
  • C L Tsou
چکیده

It has been suggested that the complexing type of inactivation in which the inactivator binds reversibly with the enzyme before inactivation cannot be differentiated kinetically from that a slow enzyme conformation change is involved as a first step [Rakitzis (1986) J. Theor. Biol. 122, 247-249]. The kinetics of the substrate reaction during modification of enzyme activity previously described [Tsou (1988) Adv. Enzymol. Relat. Areas Mol. Biol. 61, 381-436] have now been applied to this problem and equations derived to show that the slow-conformational-change type can be differentiated from the complexing type by plotting the final concentration of product formed, [P]infinity, against the reciprocal of inactivator concentration. The reaction of hexokinase with 2-chloromercuri-4-nitrophenol has been shown to involve a conformational change of the enzyme before inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics of the course of inactivation of aminoacylase by 1,10-phenanthroline.

The kinetic theory of the substrate reaction during modification of enzyme activity previously described [Tsou (1988) Adv. Enzymol. Relat. Areas Mol. Biol. 61, 381-436] has been applied to a study on the kinetics of the course of inactivation of aminoacylase by 1,10-phenanthroline. Upon dilution of the enzyme that had been incubated with 1,10-phenanthroline into the reaction mixture, the activi...

متن کامل

Flavin-dependent alcohol oxidase from yeast. Studies on the catalytic mechanism and inactivation during turnover.

The kinetic course of the reaction of methanol and deutero-methanol with FAD-dependent alcohol oxidase was investigated under single-turnover conditions [kred approximately equal to 15000 min-1 (1H3COH) and approximately equal to 4300 min-1 (2H3COH)] and multiple-turnover conditions [TNmax approximately equal to 6000 min-1 (1H3COH) and approximately equal to 3100 min-1 (2H3COH)]. A kinetic sche...

متن کامل

Theoretical Investigation of the Reaction Mechanism for a Type of N-heterocyclic Compound Involving Mono-N-aryl-3-aminodihydropyrrol

The kinetics of reaction between 4-methylaniline (1), dimethyl acetylenedicarboxylate (2) and formaldehyde (4) has been theoretically investigated to gain further insight into the reaction mechanism. The results of theoretical calculations were achieved using the ab initio method at the HF/6-311g (d, p) level of theory in gas phase. The mechanism of this reaction had 5 steps. Theoretical kineti...

متن کامل

Kinetic studies on the inactivation of L-lactate oxidase by [the acetylenic suicide substrate] 2-hydroxy-3-butynoate.

2-Hydroxy-3-butynoate is both a substrate and an irreversible inactivator of the flavoenzyme L-lactate oxidase. The partitioning between catalytic oxidation of 2-hydroxy-3-butynoate and inactivation of the enzyme is determined by the concentration of the second substrate, O2. Rapid reaction studies show the formation of an intermediate which is common to both the oxidation and inactivation path...

متن کامل

Biochemical characterization of the THIN-B metallo-beta-lactamase of Janthinobacterium lividum.

The THIN-B metallo-beta-lactamase, a subclass B3 enzyme produced by the environmental species Janthinobacterium lividum, was overproduced in Escherichia coli by means of a T7-based expression system. The enzyme was purified (>95%) by two ion-exchange chromatography steps and subjected to biochemical analysis. The native THIN-B enzyme is a monomeric protein of 31 kDa. It exhibits the highest cat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 282 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1992